Computer steuert Plasmabeschleuniger: maßgeschneiderte Teilchenstrahlen geliefert

Computer steuert Plasmabeschleuniger: maßgeschneiderte Teilchenstrahlen geliefert



Physik-News vom 16.08.2023

Per maschinellem Lernen hat ein Forschungsteam einem kompakten Teilchenbeschleuniger beigebracht, maßgeschneiderte Strahlen für verschiedene Anwendungen zu liefern. Die Technik erweitert den denkbaren Einsatzbereich sogenannter Laser-Plasmabeschleuniger, innovativer kompakter Beschleuniger der nächsten Generation, die sich noch in der Entwicklung befinden.

Teilchenbeschleuniger haben zahlreiche Anwendungsmöglichkeiten, von der Forschung über die Medizin bis hin zur Untersuchung von Frachtgut durch den Zoll. „Diese verschiedenen Verwendungszwecke stellen unterschiedliche Anforderungen an den erzeugten Teilchenstrahl“, sagt Andreas Maier, Leitender Wissenschaftler für die Laser-Plasmabeschleunigung bei DESY.


Durch den Einsatz von maschinellem Lernen können die Forschenden die Eigenschaften der Elektronenpakete wie Ladung und Energieverteilung (von oben nach unten dargestellt) in einem Plasmabeschleuniger mit hoher Präzision kontrollieren.

Publikation:


S. Jalas et al.
Tuning Curves for a Laser-Plasma Accelerator
Physical Review Accelerators and Beams (2023)

DOI: 10.1103/PhysRevAccelBeams.26.071302



Maier: „Für eine medizinische Behandlung kann etwa ein Strahl mit einer bestimmten Energie erforderlich sein, während manche Physikexperimente einen Strahl mit bestimmter elektrischer Ladung benötigen.“ Bei großen konventionellen Maschinen lassen sich diese Eigenschaften leichter einstellen, weil sie nicht so empfindlich auf Änderungen der Betriebsparameter reagieren.

Plasmabeschleuniger können jedoch rund tausendmal kleiner sein als konventionelle Anlagen. Was bei Bau, Betrieb und Anwendung einen großen Vorteil verspricht, ist bei der Steuerung der Strahlparameter eine Herausforderung. „Da die Beschleunigung auf sehr kleinem Raum stattfindet, beeinflussen sich die verschiedenen Einstellmöglichkeiten gegenseitig“, erläutert Maier. „Ändern wir also eine Eigenschaft des beschleunigten Elektronenpakets, etwa die Anzahl der Elektronen, kann dies leicht eine andere Eigenschaft beeinträchtigen wie beispielsweise die Verteilung der Energien der Elektronen.“

Um das zu verhindern, müssen die Beschleunigerphysikerinnen und -physiker im Prinzip behutsam an allen Einstellmöglichkeiten gleichzeitig drehen, um die verschiedenen Eigenschaften des Elektronenpakets auszubalancieren. Allerdings ist es für Menschen sehr schwierig, den richtigen Kompromiss zwischen den vielen unterschiedlichen Einstellparametern zu finden. Im vorliegenden Fall waren es sechs verschiedene Parameter.



Jalas weiter: „Für unseren Beschleuniger haben wir uns einer Methode bedient, die Bayessche Optimierung genannt wird. Dabei übernimmt im Grunde der Computer die Kontrolle über den Beschleuniger. Er probiert einige Konfigurationen der Maschine aus und misst die Parameter des Elektronenpakets, das der Beschleuniger ausspuckt. Aus den Messungen generiert der Computer nach und nach eine Art Landkarte und findet somit die Parameterkurven die uns zeigen, was wir einstellen müssen, um auf optimale Weise die Eigenschaften des Elektronenpakets zu bekommen, die wir gerade benötigen.“

Bei ihrem experimentellen Plasmabeschleuniger LUX haben die Forscherinnen und Forscher dies zunächst für die Energie und die elektrische Ladung der Teilchenpakete eingesetzt. „Es ist aber denkbar, das auf andere Strahleigenschaften wie etwa die Emittanz auszudehen“, betont Jalas. Das Verfahren soll auch beim großen Plasmabeschleuniger KALDERA zum Einsatz kommen, der derzeit bei DESY aufgebaut wird.



DESY zählt zu den weltweit führenden Teilchenbeschleuniger-Zentren und erforscht die Struktur und Funktion von Materie – vom Wechselspiel kleinster Elementarteilchen, dem Verhalten neuartiger Nanowerkstoffe und lebenswichtiger Biomoleküle bis hin zu den großen Rätseln des Universums. Die Teilchenbeschleuniger und die Nachweisinstrumente, die DESY an seinen Standorten in Hamburg und Zeuthen entwickelt und baut, sind einzigartige Werkzeuge für die Forschung: Sie erzeugen das stärkste Röntgenlicht der Welt, bringen Teilchen auf Rekordenergien und öffnen neue Fenster ins Universum. DESY ist Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands, und wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert.


Diese Newsmeldung wurde mit Material Deutschen Elektronen-Synchrotron DESY via Informationsdienst Wissenschaft erstellt.

Die News der letzten 7 Tage 1 Meldungen






warte

warte

warte

warte

warte

warte

warte

warte

warte

warte